Tag Archives: Energy

C’mon, Matt…

Drudge Report seems to be in some sort of feeding frenzy at the moment. Maybe they’re trying to drive more traffic in order to sell more ads. Matt…?

Just check the following page leader from earlier today:


Source: www.drudgereport.com

What can I say? Well, right off the bat, it’s definitely inflammatory. And, what’s more, it’s needlessly inflammatory and not at all representative of the text contained in the linked story. When did Matthew Drudge turn into J. Jonah Jameson? (The Drudge Report website just dropped two notches in my book.)

The Drudge-linked Washington Post story goes on to say that President Obama endorses the right of the Iranian people to energy security, including the peaceful use of nuclear energy. Isn’t that what we’ve been telling Iran for years through the IAEA? Is it not already the official position of both the US government and the United Nations Security Council?

This is almost a ‘non-story’ — and yet Drudge goes BOLD RED CAPS with what, to many readers, might sound like Obama endorsing covert Iranian nuclear weapons development. Outright fear-mongering.

So, congratulations, Matt, for getting it so wrong — and for looking so cravenly propagandistic while doing it!

Leave a comment

Filed under Chicanery, Conflict

The Advent of Monolithic Man

The word ‘monolith’ denotes something that is massive and uniform. As such, it can be applied to anything from a large, continuous piece of stone to a person of towering, unique intellect – someone who stands alone in his or her field of endeavour. In the latter case, there is perhaps no more perfect an example than that of the late professor Albert Einstein.

Had he not existed, we would not have GPS systems because the satellites can only be coordinated using the principles enshrined in his theories of Relativity. We might not even have television because he was the one who defined the photoelectric effect. Let’s not even tread into the more esoteric worlds of gravitational lensing, Bose-Einstein condensates, or the Einstein-Podolsky-Rosen paradox.

At the conclusion of 1999, Time magazine declared him to be the Person of the Century. FDR and Gandhi were mere runners-up.

Whether a matter of sheer coincidence or some bizarre manifestation of destiny, the name Einstein may have held a clue about the potential of this singularly impressive individual.

EIN + STEIN (German) =
ONE + STONE (English) =
MONO + LITH (Latin) =

A note about the cover shot from Time:

The iconic image of Einstein on our cover was taken in 1947 by the legendary photographer Philippe Halsman. Einstein was not fond of photographers (he called them Lichtaffen, or light monkeys), but he had a soft spot for Halsman. Einstein had personally included the photographer on a list of German artists and scientists getting emergency U.S. visas to evade Nazi capture. Halsman recalled that Einstein ruminated painfully in his study on the legacy of E=mc²: talk of atomic war, an arms race. “So you don’t believe that there will ever be peace?” Halsman asked as he released the shutter. Einstein’s eyes, Halsman said, “had a look of immense sadness…a question and a reproach in them.” He answered, “No. As long as there will be man, there will be war.”

Most people don’t have the time or patience required to understand the physics of Einstein, so I’m posting this practical explanation of what could be called Basic Relativity, as opposed to Einstein’s Special or General theories of Relativity.

It was derived in very much the same way that Einstein initiated his own theories – through rigorous, logical thought experiments and a healthy dose of creative intuition. (Generally, for Einstein, the formal mathematics to support his theories came in the secondary stage of his theoretical explorations.)

So, here’s a straight-forward, logical statement on Relativity (in 10 words or less) that doesn’t break any physical laws and which can even be seen to underpin many of those accepted rules – including the absolutely fundamental inverse square law. The principle (along with a simple mathematical proof) was developed by an amateur cosmologist in 2005.

Steinman’s theorem simply states:

Matter is to energy as time is to space.”


matter : energy = time : space

m : e = t : s

m / 1 : e / 1 = 1 / v : v / 1
(v is velocity or acceleration)

e = mv²
(in the ultimate case, e = mc²)





UPDATE: December 1, 2009

In response to requests for additional information on this topic, here is an addendum posted by Mr. Steinman to a related IOP [Institute of Physics] discussion group thread on LinkedIn…


I can fully understand that it’s difficult to grasp the concept:

“Matter is to energy as time is to space.” ~ But that’s the way things work.

In Gary’s [Dr. Navrotski’s] earlier response, he cited E(k)= ½mv² (the kinetic energy of a rigid body in motion) which aligns perfectly with Einstein’s Relativity. (Note: It is “½m” because the other half of the mass would be contributed in any collision by the body which is struck, à la Newton’s Third Law.)

The key to my challenge [as defined in the IOP discussion] was the word “absolute”, since this is when c embodies the most acute aspect of the accelerative component and reveals itself as absolutely central to nuclear reactivity.

Though the matter of “why” is addressed in the logical statement, the following may help to identify “how” c creeps into the calculation:

In a four-variable equation, you need to resolve at least two of them in order to extract any significant meaning.

The first thing to test is an absolute. Ideally, you’d want to interject a constant that satisfies two of the four variables.

There’s only one universal constant ( c : speed of light in vacuo) that applies to two of the four variables (in this case, time and space) without any need for statistical uncertainty (in Newtonian G uncertainty is 1.0 x 10^-4; the Planck and reducedPlanck constants have an uncertainty factor of 5.0 x 10^-8).

So, plug in the appropriate, defined, universal constant ( c ).

But you can’t plug c directly into both the Time and Space placeholders without a very minor adjustment:

For Time, it must be stated as the amount of time required for light to travel one standard unit of distance ( 1 / c ). For Space, it is the distance traversed by light in one standard unit of time ( c / 1 ). This reflects the interrelated nature of space and time as a true continuum.

This works regardless which set of standard units is used.

(Note: It may help to view time as latency; how fast something DOESN’T happen.)

After cross-multiplying the equation, you get e = mc², which conforms precisely to Einstein’s Relativity principle for mass-energy equivalence.

The nine-word statement (“matter is to energy as time is to space”) can serve as an answer to the original question (Why c² in e = mc² ?) or it can be viewed as a description of Relativity in its most fundamentally naked form.

While the logic of equating m/e to t/s will seem completely obtuse to most readers, the simplicity of the proof is inescapable.

Simple, but not overly so. (Some do find it maddening.)

Viewing things through the prism of “matter is to energy as time is to space”, you will find that none of the established laws are broken ~ only gently bent.

© 2009

Leave a comment

Filed under 10 Words or Less, Reason, Science

Reinventing The Canadian Automobile

cancar2Reprinted from a December 16, 2008, letter to the Canadian (federal) and Ontario (provincial) governments.


Dear Ministers:

I believe that we should spend as much as is necessary to save the Canadian automotive industry.

But not a penny more.

Any restructuring package obviously needs to make financial sense, but in the end, this isn’t just about money.

  • It’s about self-sufficiency and self-reliance.
  • It’s about our ability to service the changing needs of our various domestic markets through public and private industry.
  • It’s about the viability of our economy during challenging economic times and its sustainability over the long term.
  • It’s about being able to move people and things reliably and efficiently from Point A to Point B.

In a country as large and wintry as Canada, the argument for having an automobile is profound ~ sometimes, if only because they have built-in heaters.

If Only We Had Seen This Coming
Imagine if, being able to see this far ahead five years ago, we had instituted a Canadian Automobile Reinvention Initiative in this country. Had this initiative targeted an average 10% fuel efficiency improvement within five years, taxpayers (individuals and corporations) would have been able to retain approximately $4 billion in obviated expenses over the past twelve months. And they would save at least that much in every subsequent year – if not more, due to both incremental and revolutionary advances in technology over time. But let’s return to the present: How do you expect things will look five years from now?

Technological Opportunities
We probably can’t spend our way out of the current economic crisis, but we just might be able to invent a way out of it.

Canada has long been an exporter of ingenious technologies in fields ranging from aerospace, communications and nuclear science …to zippers, insulin and foghorns. Innovation has often been a hallmark of Canadian endeavour – and I don’t see any reason why that shouldn’t apply especially well in this case.

The next significant stage in the development of hybrid [gas:electric] vehicles will be “serial hybrid” technology. (Please have your techies fill you in on this.) The gains in efficiency we witnessed with the introduction of our current crop of hybrid vehicles will be viewed as small in comparison to the next generation of these automobiles. Efficiency gains of at least 30% within 10 years have been widely (and very conservatively) projected. More confident forecasts anticipate fuel economy in the range of 200-500 miles per gallon (at least for small passenger cars) within twenty years!

One of the problems with implementing serial hybrid technology (requiring the electric motor to be the sole engine engaged to the drivetrain) has been the relative absence of high-efficiency variable torque electric motors, but this is now about to change. There have been a number of patents filed over the past few years for devices that will deliver appropriate torque and rotor speeds under the full range of typical motor vehicle operating conditions. Prototypes and production models of some engines are already available. Some of these designs will not only reduce vehicle weight but also the number of parts required to construct the drivetrain. Brake wear will also be reduced in most instances, only adding to the long list of potential benefits.

Recouping the Costs of a “Bailout”
If we’re looking for ways to ensure that we’re paid back for our assistance to the automotive industry, then we must consider increased fuel efficiency to be one of the most effective (though least visible means) of achieving that goal.

Of course, any government financing extended to Canada’s ‘Big Three’ would also require a proper repayment schedule and a reasonable interest premium.

High fuel prices are a drag on the global economy and constitute an insidious form of pseudo-taxation for individuals and corporations alike. Less fuel used, means more money available for personal discretionary spending and more capital for industrial restructuring.

It can easily be argued that the cost of doing nothing is potentially far greater than the cost of a reasonable auto industry reinvestment plan. The broader automotive sector (parts manufacturing, etc.) is particularly sensitive to effects cascading from production slowdowns or stoppages by the ‘Big Three’ – not to mention the deficit in which such companies would immediately find themselves in the case of one or more bankruptcies among the major automakers.

Last time I checked, a penny saved was still a penny earned. By that standard, we stand to make a pretty penny by increasing vehicle fuel efficiency and improving market stability and confidence. And then there’s the matter of making our automobiles more competitive in the world market (and, accordingly, more competitive against foreign products in our own market) by reducing the cost of vehicle production and lowering basic vehicle operating costs while increasing reliability through improved drivetrain simplicity.

Energy Efficiency as a Matter of National Security
The current global economic malaise is much bigger than our experience of it in Canada ~ heck, it’s big enough to subdue that vast, economic giant to our south. Its effects stretch completely around the world, leaving few–if any–places untouched. As we have witnessed in both economic and military terms in recent years, insecurity anywhere affects security everywhere. Hence, a global problem is also a Canadian problem.

When a government, like the one in Tehran, can provoke a worldwide petroleum price spike by simply threatening to close the Strait of Hormuz, we are left with few options to directly combat such a ‘security tax’. But increased fuel efficiency acts as a direct hedge against this form of economic ‘attack’. Canada may be energy self-sufficient, but many of our best friends and trading partners are not. And they will become increasingly dependent upon us (and our resources) as time rolls on.

Many electric motors manufactured today use Rare Earth Elements (such as neodymium) in their Permanent Magnet motor assemblies. This constitutes an additional risk since more than 90% of worldwide REE production comes from China whose production is expected to crest in just a few years’ time — just as their own industrial consumption begins to outstrip their ability to mine more of these critical elements. There are several variable torque electric motor designs which do not use REEs and would therefore not be sensitive to shortfalls in availability, or even possible embargoes.

Perhaps it’s time for a ‘Made in Canada’ solution
If we were to make available $1 billion dollars for each of our three main domestic automakers in the form of government-guaranteed lines of credit, this would allow each of the manufacturers to continue operations while only drawing on funds as they need them.

We could also offer a grant to each company of another $1 billion if they would participate in a joint effort to improve the efficiency of Canadian automobiles through the development of a uniquely Canadian, next-generation, serial hybrid vehicle architecture.

A development corporation (funded to the tune of $1 billion ~ making our running total $7 billion) could be formed to retain any unique intellectual property generated by this co-development work, in which all participating companies would share. Stakeholders would include the ‘Big Three’ and the Government of Canada, but direct positions would also be open to qualified regional and national manufacturers, as well as to key international technology contributors. Eventual revenues from the licensing of these technologies to the world market would enrich each of the participants in direct proportion to their technical contributions to the project.

I haven’t mentioned the environment as an excellent reason for limiting our release of greenhouse gases and other pollutants, but the link is obvious. The trick is to do it without damaging our economy in the process. Or better still, to do it while improving the state of our economy. If asked, most Canadians would probably say that they consider themselves to be environmentalists or conservationists to some degree. That’s great, but it’s very difficult for me to imagine how we can be responsible stewards of G-d’s good earth unless–and until–we become proper managers of our technology and more mindful of its impact on the greater whole.

The regrettable oversight committed by our automakers, in construing a demand for vehicles that consumers would ultimately prove unwilling to buy, serves to demonstrate the high cost associated with making mistakes in today’s turbulent markets.

As I see it, our best choice now is to stabilise the Canadian auto sector through wise reinvestment that focuses on innovation and efficiency; supports Canadian autoworkers and their families; better positions all our energy- and transportation-dependent industries for the future; and puts Canada back on the technological leader board.

The auto industry clearly needs a “Manhattan Project” (or maybe a Peterborough Project) to quickly develop the sorts of cars that Canadians truly want to buy; the sorts of cars that will save them money at the pumps and offer power and performance comparable to—or exceeding—their expectations of purely gas-powered vehicles.

Build a better car and Canadians will warm up to it quickly ~ especially in winter.


Filed under Conflict, Economy, Life, Reason, Science, Words